Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens.
نویسندگان
چکیده
The antibacterial activity of photocatalytic titanium dioxide (TiO(2)) substrates is induced primarily by UV light irradiation. Recently, nitrogen- and carbon-doped TiO(2) substrates were shown to exhibit photocatalytic activities under visible-light illumination. Their antibacterial activity, however, remains to be quantified. In this study, we demonstrated that nitrogen-doped TiO(2) substrates have superior visible-light-induced bactericidal activity against Escherichia coli compared to pure TiO(2) and carbon-doped TiO(2) substrates. We also found that protein- and light-absorbing contaminants partially reduce the bactericidal activity of nitrogen-doped TiO(2) substrates due to their light-shielding effects. In the pathogen-killing experiment, a significantly higher proportion of all tested pathogens, including Shigella flexneri, Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, Streptococcus pyogenes, and Acinetobacter baumannii, were killed by visible-light-illuminated nitrogen-doped TiO(2) substrates than by pure TiO(2) substrates. These findings suggest that nitrogen-doped TiO(2) has potential application in the development of alternative disinfectants for environmental and medical usages.
منابع مشابه
Ag-doped TiO2 Nanocomposite Prepared by Sol Gel Method: Photocatalytic Bactericidal Under Visible Light and Characterization
In this reaserch, photocatalyst titanium dioxide was doped with silver and modified by polyethylene glycol by sol gel method and the samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The purpose of the present study was to evaluate the photocatalytic bactericidal effects of prepared nanocomposite on human p...
متن کاملVisible Light Activity of Nitrogen-Doped TiO2 by Sol-Gel Method Using Various Nitrogen Sources
In order to improve photocatalytic activities of the pure anatase TiO2 under UV and visible light irradiations, a novel and efficient N-doped TiO2 photocatalyst was prepared by sol-gel method. N-doped titania is prepared using the various nitrogen sources such as: triethylamine, N,N,N’,N’-tetramethylethane-1,2-diamine, ethyldiamine, 1,2-phenylenediamine, propanolamine, and...
متن کاملVisible-light Photocatalyst - Nitrogen-doped Titanium Dioxide -
A new photocatalyst, known as nitrogen-doped TiO2 (TiO2-xNx), yielding high reactivity under visible light irradiation, together with high potential for mass-productivity, has been developed by using a highly time-efficient development technique that combines computational materials design with experimental syntheses. Under visible light irradiation, TiO2-xNx films and powders exhibit significa...
متن کاملPhotocatalyst Ag@N/TiO2 Nanoparticles: Fabrication, Characterization, and Investigation of the Effect of Coating on Methyl Orange Dye Degradation
In this research, N-doped TiO2 (N/TiO2) nanoparticles have been synthesized by a sol-gel method. N/TiO2 nanoparticle has been coated with Ag metal by photochemical method. Triethylamine, N(CH3CH2)3, have been used as precursors of Nitrogen, titanium tetraiso-propoxide (TTIP), Ti[OCH(CH3)2]4, used as precursors of titanium and Ag(NO3)2 used as precursors of Silver in synthesis of these nanoparti...
متن کاملHydrothermal synthesis of nitrogen doped graphene supported cobalt ferrite (NG@CoFe2O4) as photocatalyst for the methylene blue dye degradation
A magnetic NG@CoFe2O4 photocatalyst was developed via a facile hydrothermal method and characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometry (VSM) techniques. The CoFe2O4 nanoparticles were found to have a size between 100-150 nm and were unifo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 72 9 شماره
صفحات -
تاریخ انتشار 2006